Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants.
نویسندگان
چکیده
Recombinant human myoglobin mutants with the distal His residue (E7, His64) replaced by Leu, Val, or Gln residues were prepared by site-directed mutagenesis and expression in Escherichia coli. Electronic and coordination structures of the ferric heme iron in the recombinant myoglobin proteins were examined by optical absorption, EPR, 1H NMR, magnetic circular dichroism, and x-ray spectroscopy. Mutations, His-->Val and His-->Leu, remove the heme-bound water molecule resulting in a five-coordinate heme iron at neutral pH, while the heme-bound water molecule appears to be retained in the engineered myoglobin with His-->Gln substitution as in the wild-type protein. The distal Val and distal Leu ferric myoglobin mutants at neutral pH exhibited EPR spectra with g perpendicular values smaller than 6, which could be interpreted as an admixture of intermediate (S = 3/2) and high (S = 5/2) spin states. At alkaline pH, the distal Gln mutant is in the same so-called "hydroxy low spin" form as the wild-type protein, while the distal Leu and distal Val mutants are in high spin states. The ligand binding properties of these recombinant myoglobin proteins were studied by measurements of azide equilibrium and cyanide binding. The distal Leu and distal Val mutants exhibited diminished azide affinity and extremely slow cyanide binding, while the distal Gln mutant showed azide affinity and cyanide association rate constants similar to those of the wild-type protein.
منابع مشابه
EPR characterization of the stereochemistry of the distal heme pocket of the engineered human myoglobin mutants.
Recombinant human myoglobin mutants with the distal histidine residue replaced by Leu, Val, or Gln residues have been prepared by site-directed mutagenesis and expression in Escherichia coli. The recombinant apomyoglobin proteins have been successfully reconstituted with cobaltous protoporphyrin IX to obtain cobalt myoglobin mutant proteins, and the role of the distal histidine residue on the i...
متن کاملThe Role of the Distal and Proximal Protein Environments in Controlling the Ferric Spin State and in Stabilizing Thiolate Ligation in Heme Systems: Thiolate Adducts of the Myoglobin H93G Cavity Mutant
Recently, heme protein cavity mutants have been engineered in which the proximal coordinating amino acid has been replaced by a smaller, noncoordinating residue leaving a cavity that can be filled by exogenous axial ligands. This approach was pioneered by Barrick (Biochemistry 1994, 33, 6546-6554) with H93G sperm whale myoglobin where the coordinating histidine is replaced by glycine and the pr...
متن کاملRegulating the Coordination State of a Heme Protein by a Designed Distal Hydrogen-Bonding Network
Heme coordination state determines the functional diversity of heme proteins. Using myoglobin as a model protein, we designed a distal hydrogen-bonding network by introducing both distal glutamic acid (Glu29) and histidine (His43) residues and regulated the heme into a bis-His coordination state with native ligands His64 and His93. This resembles the heme site in natural bis-His coordinated hem...
متن کاملCrystal structure of a nonsymbiotic plant hemoglobin.
BACKGROUND Nonsymbiotic hemoglobins (nsHbs) form a new class of plant proteins that is distinct genetically and structurally from leghemoglobins. They are found ubiquitously in plants and are expressed in low concentrations in a variety of tissues including roots and leaves. Their function involves a biochemical response to growth under limited O(2) conditions. RESULTS The first X-ray crystal...
متن کاملSelective Examination of Heme Protein Azide Ligand-Distal Globin Interactions by Vibrational Circular Dichroism
Vibrational circular dichroism (VCD) spectra of the antisymmetric stretch of azide ligated to the heme of a series of evolutionarily diverse and site-directed mutant hemoglobins and myoglobins are anomalously intense and demonstrate an intriguing sensitivity to subtle protein-ligand interactions. The antisymmetric stretch of the azide ligand covalently bound to the low-spin iron shows an anisot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 32 شماره
صفحات -
تاریخ انتشار 1992